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1. Introduction

The coefficient of mean difference which is due to Gitii (1912)
may be defined by :

00

Ai= x-y I dFix) dF(y)
— OO oo

where F(x) is a continuous distribution function of x (—co<x<co).
The appearance of absolute values in the definition makes it extremely
difficult to calculate the integral. However, we can get rid of the
absolute values in the integrand by using a simpler result due to
Kendall (1952).

where

Ai=2

—00

F(x)^

—00

F(x) {l-F(x)}dx

f{x)dx

is the distribution function. But, it is hardly possible to calculate
the above integral, except of course, when F(x) is of a simpler form. -

Until now no attempt has been made to express Ai in terms
of parameters of the distribution function F{x). In this paper we
shall integrate this integral and express in the form of an infinite
series whose terms depend on F(x) and its derivatives at ;£:=0. The
expression is checked against well known results for Ai.



THE COEFFICIENT OF MEAN DIFFERENCE
109

2. Expression of Ai in an Infinite Series

We shall prove the followi.-g theorem in this section.

Theorem 1. If Fix) be a single valued function ofx,continuous
in the range -co < x < oo and monotone increasing, and if first
movement exists, then Ai can be expressed as an infinite series :

Ai=2(2F„-1) ix/ +4 ^

where

and

Fo=
— 00

IJ'l =

oo

i=I

0

dF(x).

CO

xd F(x)

Proof.

Under the usual conditions, Maclaurin's Expansion gives ;

F(x)=F(0)-fxF'(0)+ 2T^"(0)+-+ ^F^-\0)+...

or,

G(;c)=;cF(0)+^J"'(0)+ +•••+ ^ '̂"'(0)+-
where

G{x)=F{x)-FiO).

By reversing the above series we get,

00

j=l
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\shere

{^"(0)+ |-F'(0)+.|fF"(0.)+...} '

Substituting this value of x we have,

oo

M-I xdF

oo

m dG(x)

D00

x=-o

(Bromwitch, 1947).

...(2 2)

Ai=2

=2

-F,

F(x) {l-i^(x)} dx

oo

2 (G+F,) (l-Fo-G)ib, G'-i
0 '=1

oo 1 Fg

dG

=2

i=l ~Fo

[F„{l-F,)+{l-2Fo)G-G^] G^-i dG

=2 '̂ b,Fg{\-Fo)Y{l-FgY-{-F,Y
i

2 gd-!/,•+1)6,(1 _2F„) |̂ (l_f„)Hi_(_i7^)i+i
i

-2 2(1-2/^+2)6, [ (i-F„)'+^_(_f„)H2
i

00

=2(2i^„-l) 2 (6,//+l) (I_ir„)m_(_i7^).+1

;=1
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+4 2; iNi+2) [
1= 1

Therefore,

00

Ai=2(2f„~l)(x/+4 ^ (bJi+2)

III

i=l

[follows.from (2-2)]

3. Expression of Ai in Special Cases

(fl) Distributions symmetrical about ;c=0.

For a distribution symmetrical about a:=0 we have fo=l/2.

Hence by Theorem 1, we get,

00

A1=4 2] (bJi+2) (l/2)i+2_(_|)H2

i=l

00

1=1

(b) Distributions for which 0 < x < <=0.

For such distributions

Fo=0 and Ai becomes
00

Ai=-2f../+4 ^ ibili+2). ...(3-2)
i=l

4. On the b Coefficients.

The b's may be calculated by the formula (2"1) for bi.

But, it is convenient to calculate the b's by the method of
undetermined coefficients.

C(x)=A-f'(0) + :c'^":(0)/2!+... +,x"F<"'(0)/«! +...

and

00

/=!
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Substituting this value of ;c in the infinite series for G(x).

G=[6^F(0)]G+62F(0)+V^"(0)/2]G^4-
lb,F'i0)+b,b,F\0)+b,'F"'(0)l6]G'

+ [b,F'i0)+b.^F"i0jl2+b,b,F"{0)+
b,%F"'{0)l2 + b,''F"'i0)l24]r,^+ (4 1)

and equating coefficients of G, G^, C, G^..,on both sides, we get;

^=l/F(0) = l//„
b,= --b,'F"(Q)l2F'(0) = -f'(0)l2f,'
b,= -b,' F"'(0)/6 F{Q)-bA F"(0)IF'(0)

= {/'(0)F/2/„^-/'\0)/6//
K=(llF'm l-V F"i0)l2-b,b, F'(0)-

b,^b^ F"(0)/2-V i^""(0)/24]
= -5{/'(0)}V0/<,' + 5/"(0)/'(0j/12/<,«-

/"'(0)/24//

5. In THIS Section the Results Obtained Will be Checked by the
Known Value of Ai in the Cases Where it Can be Directly
Obtained.

(z) Rectangular Distribution

dF=dxlk, 0<x<A:

[xi'=^/2, Fix)=xllc.
So.

k

Ai=2 [ (xlk){l-xlk)dx=kl3. ...(5-1)
0

From result (3-2) in this case

CO

Ai=-/^+4 2 ( '̂/' +2).
1=1

The b's may be calculated from (4'2) we have

bi—k, Z)j=0, j>l.

Hence, Ai=kj3, which is the same as obtained in (5-1).

(») Exponential Distribution.

dF=(1 j(y)e''̂ i'̂ dx, O^x^co

...(4-2)
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F(x)=l-e'''l'',

=
xdF=ar (2) = cr

Ai=2 (l-e"^/" ) (e )dx=a.

113

...(5-2)

In this case b's are directly calculaled as follows. We have,

f(.v)=l-e""-^/°, f(0) =0.

and

f(n)(0) = (-])«+l/a''.

And from (4'1)

G{x) = (1 la)[b^G{x)+b,G\x)+..(1 /a'-) [6iG(x) + b^G^~(x)+..^!

+ (1/a3)[6,G(^)+ b,G\x)+.. ]3/3! +...

= l-exp. [-{bfi{x) + Lfi'-ix)+...}lc!]

or.

-{b,lo) G(x)-ib,la) G%r)-... = log (1-C(^))

= -Gix)-

Ai=-2a + 4a
1-3 ^ 2-4 ^ 3-5 ^

Since

G^x) G^(x)
2 3

[as G(x) < 1].

Equating coefficients of G, G^, G^,...etc. on both sides.

bi=a, A2=ct/2. b^=cj?>,..., bi=ali,....

Substituting these values of b's in the expression for Ai

obtained from (3'2).

1 1
n(ft + 2)^ • S

1 1
oo oo

S n[n+2)£ yn[n+2)
n=\ /-I

= 3/4
_n n+2_

Ai=(J, which is the same as the result obtained in (5'2).
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6. Here Wb Shall'Calculaie Ai in the Case of Normal
Distribution.

= F'(0)=i/aV^, F'(0)= 0

and using Hcrmite polynomials, generally
f<-"')(0)=0, f'^'«+i'(0)=-(2m-I) F(2™-i)(0).
From (4*2) or by following (4"1) we have 1^1=0

and

^ =t7\/27r, b3=^G(V2^f 16, bs=a.7{V^nyil20
b,=a -127(^^)75040, etc.
Substituting these values of Zj-coefficients in the expression

oo

Ai= 2 (^2i-i)/(2i+1)2^-2,
; = 1

we get

A1= [V2-ir/3+(V 120+(V 1920
+ 127 (V'^)'/2903040f...]

= a[0-835 + 0-I31-f0 051+0-027 + ...]
= a.[l-044+...]

= (1'044)ct, approximately.
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